Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Comput Med Imaging Graph ; 109: 102295, 2023 10.
Article in English | MEDLINE | ID: mdl-37717365

ABSTRACT

BACKGROUND: Medical image classification is crucial for accurate and efficient diagnosis, and deep learning frameworks have shown significant potential in this area. When a general learning deep model is directly deployed to a new dataset with heterogeneous features, the effect of domain shifts is usually ignored, which degrades the performance of deep learning models and leads to inaccurate predictions. PURPOSE: This study aims to propose a framework that utilized the cross-modality domain adaptation and accurately diagnose and classify MRI scans and domain knowledge into stable and vulnerable plaque categories by a modified Vision Transformer (ViT) model for the classification of MRI scans and transformer model for domain knowledge classification. METHODS: This study proposes a Hybrid Vision Inspired Transformer (HViT) framework that employs a convolutional layer for image pre-processing and normalization and a 3D convolutional layer to enable ViT to classify 3D images. Our proposed HViT framework introduces a slim design with a multi-branch network and channel attention, improving patch embedding extraction and information learning. Auxiliary losses target shallow features, linking them with deeper ones, enhancing information gain, and model generalization. Furthermore, replacing the MLP Head with RNN enables better backpropagation for improved performance. Moreover, we utilized a modified transformer model with LSTM positional encoding and Golve word vector to classify domain knowledge. By using ensemble learning techniques, specifically stacking ensemble learning with hard and soft prediction, we combine the predictive power of both models to address the cross-modality domain adaptation problem and improve overall performance. RESULTS: The proposed framework achieved an accuracy of 94.32% for carotid artery plaque classification into stable and vulnerable plaque by addressing the cross-modality domain adaptation problem and improving overall performance. CONCLUSION: The model was further evaluated using an independent dataset acquired from different hardware protocols. The results demonstrate that the proposed deep learning model significantly improves the generalization ability across different MRI scans acquired from different hardware protocols without requiring additional calibration data.


Subject(s)
Carotid Stenosis , Humans , Carotid Stenosis/diagnostic imaging , Magnetic Resonance Imaging , Calibration , Image Processing, Computer-Assisted
2.
Comput Med Imaging Graph ; 109: 102294, 2023 10.
Article in English | MEDLINE | ID: mdl-37713999

ABSTRACT

BACKGROUND: Brain stroke is a leading cause of disability and death worldwide, and early diagnosis and treatment are critical to improving patient outcomes. Current stroke diagnosis methods are subjective and prone to errors, as radiologists rely on manual selection of the most important CT slice. This highlights the need for more accurate and reliable automated brain stroke diagnosis and localization methods to improve patient outcomes. PURPOSE: In this study, we aimed to enhance the vision transformer architecture for the multi-slice classification of CT scans of each patient into three categories, including Normal, Infarction, Hemorrhage, and patient-wise stroke localization, based on end-to-end vision transformer architecture. This framework can provide an automated, objective, and consistent approach to stroke diagnosis and localization, enabling personalized treatment plans based on the location and extent of the stroke. METHODS: We modified the Vision Transformer (ViT) in combination with neural network layers for the multi-slice classification of brain CT scans of each patient into normal, infarction, and hemorrhage classes. For stroke localization, we used the ViT architecture and convolutional neural network layers to detect stroke and localize it by bounding boxes for infarction and hemorrhage regions in a patient-wise manner based on multi slices. RESULTS: Our proposed framework achieved an overall accuracy of 87.51% in classifying brain CT scan slices and showed high precision in localizing the stroke patient-wise. Our results demonstrate the potential of our method for accurate and reliable stroke diagnosis and localization. CONCLUSION: Our study enhanced ViT architecture for automated stroke diagnosis and localization using brain CT scans, which could have significant implications for stroke management and treatment. The use of deep learning algorithms can provide a more objective and consistent approach to stroke diagnosis and potentially enable personalized treatment plans based on the location and extent of the stroke. Further studies are needed to validate our method on larger and more diverse datasets and to explore its clinical utility in real-world settings.


Subject(s)
Brain , Stroke , Humans , Brain/diagnostic imaging , Stroke/diagnostic imaging , Tomography, X-Ray Computed , Hemorrhage , Infarction
3.
Comput Methods Programs Biomed ; 238: 107602, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37244234

ABSTRACT

BACKGROUND AND OBJECTIVE: Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. METHODS: In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. RESULTS: This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. CONCLUSION: This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.


Subject(s)
Corpus Callosum , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Corpus Callosum/diagnostic imaging , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
4.
Front Neurol ; 14: 1151421, 2023.
Article in English | MEDLINE | ID: mdl-37025199

ABSTRACT

The efficacy of acupuncture and moxibustion in the treatment of depression has been fully recognized internationally. However, its central mechanism is still not developed into a unified standard, and it is generally believed that the central mechanism is regulation of the cortical striatum thalamic neural pathway of the limbic system. In recent years, some scholars have applied functional magnetic resonance imaging (fMRI) to study the central mechanism and the associated brain effects of acupuncture and moxibustion treatment for depression. This study reviews the acupuncture and moxibustion treatment of depression from two aspects: (1) fMRI study of the brain function related to the acupuncture treatment of depression: different acupuncture and moxibustion methods are summarized, the fMRI technique is elaborately explained, and the results of fMRI study of the effects of acupuncture are analyzed in detail, and (2) fMRI associated "brain functional network" effects of acupuncture and moxibustion on depression, including the effects on the hippocampus, the amygdala, the cingulate gyrus, the frontal lobe, the temporal lobe, and other brain regions. The study of the effects of acupuncture on brain imaging is not adequately developed and still needs further improvement and development. The brain function networks associated with the acupuncture treatment of depression have not yet been adequately developed to provide a scientific and standardized mechanism of the effects of acupuncture. For this purpose, this study analyzes in-depth the clinical studies on the treatment of anxiety and depression by acupuncture and moxibustion, by depicting how the employment of fMRI technology provides significant imaging changes in the brain regions. Therefore, the study also provides a reference for future clinical research on the treatment of anxiety and depression.

5.
Comput Methods Programs Biomed ; 231: 107378, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731312

ABSTRACT

BACKGROUND AND OBJECTIVE: Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes. METHODOLOGY: This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction. RESULTS: Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%. CONCLUSION: This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.


Subject(s)
Diabetes Mellitus , Humans , Algorithms , Neural Networks, Computer , Machine Learning , Random Forest , Support Vector Machine
6.
Comput Methods Programs Biomed ; 229: 107304, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586176

ABSTRACT

OBJECTIVE: The traditional ICM is widely used in applications, such as image edge detection and image segmentation. However, several model parameters must be set, which tend to lead to reduced accuracy and increased cost. As medical images have more complex edges, contours and details, more suitable combinatorial algorithms are needed to handle the pathological diagnosis of multiple cerebral infarcts and acute strokes, resulting in the findings being more applicable, as well as having good clinical value. METHODS: To better solve the medical image fusion and diagnosis problems, this paper introduces the image fusion algorithm based on the combination of NSCT and improved ICM and proposes low-frequency, sub-band fusion rules and high-frequency sub-band fusion rules. The above method is applied to the fusion of CT/MRI images, subsequently, three other fusion algorithms, including NSCT-SF-PCNN, NSCT-SR-PCNN and Adaptive-PCNN are compared, and the simulation results of image fusion are analyzed and validated. RESULTS: According to the experimental findings, the suggested algorithm performs better than other fusion algorithms in terms of five objective evaluation metrics or subjective evaluation. The NSCT transform and the improved ICM were combined, and the outcomes were evaluated against those of other fusion algorithms. The CT/MRI medical images of healthy brain tissue, numerous cerebral infarcts and acute strokes were combined using this technique. CONCLUSION: Medical image fusion using Adaptive-PCNN produces satisfactory results, not only in relation to improved image clarity but also in terms of outstanding edge information, high contrast and brightness.


Subject(s)
Stroke , Visual Cortex , Humans , Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Algorithms , Stroke/diagnostic imaging , Cerebral Infarction/diagnostic imaging , Image Processing, Computer-Assisted/methods
7.
Comput Methods Programs Biomed ; 226: 107055, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183637

ABSTRACT

OBJECTIVE: Inefficient circulatory system due to blockage of blood vessels leads to myocardial infarction and acute blockage. Myocardial infarction is frequently classified and diagnosed in medical treatment using MRI, yet this method is ineffective and prone to error. As a result, there are several implementation scenarios and clinical significance for employing deep learning to develop computer-aided algorithms to aid cardiologists in the routine examination of cardiac MRI. METHODS: This research uses two distinct domain classifiers to address this issue and achieve domain adaptation between the particular field and the specific part is a problem Current research on environment adaptive systems cannot effectively obtain and apply classification information for unsupervised scenes of target domain images. Insufficient information interchange between specific domains and specific domains is a problem. In this study, two different domain classifiers are used to solve this problem and achieve domain adaption. To effectively mine the source domain images for classification understanding, an unsupervised MRI classification technique for myocardial infarction called CardiacCN is proposed, which relies on adversarial instructions related to the interpolation of confusion specimens in the target domain for the conflict of confusion specimens for the target domain classification task. RESULTS: The experimental results demonstrate that the CardiacCN model in this study performs better on the six domain adaption tasks of the Sunnybrook Cardiac Dataset (SCD) dataset and increases the mean target area myocardial infarction MRI classification accuracy by approximately 1.2 percent. The classification performance of the CardiacCN model on the target domain does not vary noticeably when the temperature-controlled duration hyper-parameter rl falls in the region of 5-30. According to the experimental findings, the CardiacCN model is more resistant to the excitable rl. The CardiacCN model suggested in this research may successfully increase the accuracy of the source domain predictor for the target domain myocardial infarction clinical scanning classification in unsupervised learning, as shown by the visualization analysis infrastructure provision nurture. It is evident from the visualization assessment of embedded features that the CardiacCN model may significantly increase the source domain classifier's accuracy for the target domain's classification of myocardial infarction in clinical scans under unsupervised conditions. CONCLUSION: To address misleading specimens with the inconsistent classification of target-domain myocardial infarction medical scans, this paper introduces the CardiacCN unsupervised domain adaptive MRI classification model, which relies on adversarial learning associated with resampling target-domain confusion samples. With this technique, implicit image classification information from the target domain is fully utilized, knowledge transfer from the target domain to the specific domain is encouraged, and the classification effect of the myocardial ischemia medical scan is improved in the target domain of the unsupervised scene.


Subject(s)
Algorithms , Myocardial Infarction , Humans , Magnetic Resonance Imaging , Myocardial Infarction/diagnostic imaging
8.
Comput Methods Programs Biomed ; 226: 107049, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36274507

ABSTRACT

OBJECTIVE: The segmentation and categorization of fibrotic tissue in time-lapse enhanced MRI scanning are quite challenging, and it is mainly done manually for myocardial DE-MRI images. On the other hand, DE-MRI instructions for segmenting and classifying cardiac hypertrophy are complex and prone to inaccuracy. Developing cardiac DE-MRI classification and prediction methods is crucial. METHODS: This paper introduces a self-supervised myocardial histology segmentation algorithm with multi-scale portrayal consistency to address the degree of sophistication of cardiology DE-MRI. The model retrieves multi-scale representations from multiple expanded viewpoints using a Siamese system and uses resemblance learning instruction to achieve unlabeled representations. The DE-MRI data train the network weights to generate a superior segmentation effect by accurately reflecting the exact scale information. The paper provides an end-to-end method for detecting myocardial fibrosis tissue using a Transformer as a result of the poor classification outcomes of myocardial fibrosis substance in DE-MRI. A deep learning model is created using the Pre-LN Transformer decoded simultaneously with the Multi-Scale Transformer backbone structure developed in this paper. In addition, the joint regression cost, which incorporates the CIoU Loss and the L1 Loss, is used to determine the distance between forecast blocks and labels. RESULTS: Increasing the independent evaluation and annotations position compared enhances performance compared to the segmentation method without canvas matching by 1.76%, 1.27%, 0.93%, and -1.17 mm on Dice, PPV, SEN, and HD, respectively. Based on the strongest of the three single-scale representation methodologies, the segmentation model in this study is enhanced by 0.71%, 0.79%, and 1.47%, as well as -1.49 mm on Dice, PPV, SEN, and HD, respectively. The effectiveness and reliability of the segmentation model are confirmed. Additionally, testing results show that this study's recognition system's mAP is 84.97%, which is greater than the benchmark techniques used in most other studies. The framework converges round is compressed by 18.1% compared to the DETR detection approach, and the identification rate is improved by 3.5%, proving the strategy's value. CONCLUSION: The self-supervised cardiac fibrosis segmentation method with multi-scale portrayal consistency and end-to-end myocardial histology categorization is introduced in this study. To solve the challenges of segmentation and myocardial fibrosis identification in cardiology DE-MRI, a Transformer-based detection approach is put forth. It may address the issue of the myocardial scarring material's low accuracy in segmentation and classification in DE-MRI, as well as provide clinicians with a fibrosis diagnosis that is supplementary to the conventional therapy of heart ailments.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Algorithms , Fibrosis
9.
Comput Methods Programs Biomed ; 225: 107073, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029551

ABSTRACT

PURPOSE: This paper proposes a CT images and MRI segmentation technology of cardiac aorta based on XR-MSF-U-Net model. The purpose of this method is to better analyze the patient's condition, reduce the misdiagnosis and mortality rate of cardiovascular disease in inhabitants, and effectively avoid the subjectivity and unrepeatability of manual segmentation of heart aorta, and reduce the workload of doctors. METHOD: We implement the X ResNet (XR) convolution module to replace the different convolution kernels of each branch of two-layer convolution XR of common model U-Net, which can make the model extract more useful features more efficiently. Meanwhile, a plug and play attention module integrating multi-scale features Multi-scale features fusion module (MSF) is proposed, which integrates global local and spatial features of different receptive fields to enhance network details to achieve the goal of efficient segmentation of cardiac aorta through CT images and MRI. RESULTS: The model is trained on common cardiac CT images and MRI data sets and tested on our collected data sets to verify the generalization ability of the model. The results show that the proposed XR-MSF-U-Net model achieves a good segmentation effect on CT images and MRI. In the CT data set, the XR-MSF-U-Net model improves 7.99% in key index DSC and reduces 11.01 mm in HD compared with the benchmark model U-Net, respectively. In the MRI data set, XR-MSF-U-Net model improves 10.19% and reduces 6.86 mm error in key index DSC and HD compared with benchmark model U-Net, respectively. And it is superior to similar models in segmentation effect, proving that this model has significant advantages. CONCLUSION: This study provides new possibilities for the segmentation of aortic CT images and MRI, improves the accuracy and efficiency of diagnosis, and hopes to provide substantial help for the segmentation of aortic CT images and MRI.


Subject(s)
Deep Learning , Aorta/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods
10.
Comput Methods Programs Biomed ; 225: 107041, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994871

ABSTRACT

OBJECTIVE: It is essential to utilize cardiac delayed-enhanced magnetic resonance imaging (DE-MRI) to diagnose cardiovascular disease. By segmenting myocardium DE-MRI images, it provides critical information for the evaluation and treatment of myocardial infarction. As a consequence, it is vital to investigate the segmentation and classification technique of myocardial DE-MRI. METHODS: Firstly, an end-to-end minimally supervised and semi-supervised semantic DE-MRI myocardial fibrosis segmentation framework is proposed, which combines image classification and semantic segmentation branches based on the self-attention mechanism. Following that, a residual hole network fused with the dual attention mechanism was built, and a double attention metabolic pathway classification method for cardiac fibrosis in DE-MRI images was developed. RESULTS: By adding pixel-level labels to an extra 40 training images, the segmentation model may enhance semantic segmentation performance by 2.6 percent (from 61.2 percent to 63.8 percent). When the number of pixel-level labels is increased to 80, semi-supervised feature extraction increases by 4.7 percent when compared to weakly guided semantic segmentation. Adding an attention mechanism to the critical network DRN (Deep Residual Network) can increase the classifier's performance by a small amount. Experiments revealed that the models worked effectively. CONCLUSION: This paper investigates the segmentation and classification of cardiac fibrosis in DE-MRI data using a semi-supervised semantic segmentation and dual attention mechanism, dealing with the issue that existing segmentation algorithms have difficulty segmenting myocardial fibrosis tissue. In the future, we can consider optimizing the design of the attention module to reduce the module computation.


Subject(s)
Image Processing, Computer-Assisted , Semantics , Algorithms , Fibrosis , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
11.
Comput Methods Programs Biomed ; 221: 106915, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35653942

ABSTRACT

BACKGROUND AND OBJECTIVE: Left atrial enlargement (LAE) is an anatomical variation of the left atrium and the result of the long-term increase of left atrial pressure. Most of the increase in stress or volume is due to potential cardiovascular disease. Studies have shown that LAE can independently predict the development of clinically significant cardiovascular disease and heart failure. If the left atrial volume is accurately measured, it will be an essential indicator of human health and an essential means for doctors to find patients' potential diseases. We can analyze the dynamic changes in the left atrial structure and analyze left atrial dilation. However, manual segmentation was inefficient and error-prone before the 3D reconstruction of the left atrium. In order to solve this problem, a convolution neural network (CNN) method based on cardiac magnetic resonance image (MRI) is proposed to automatically segment the left atrial region. METHODOLOGY: In this paper, we have proposed and developed a novel U-Net with Gaussian blur and channel weight neural network (GCW-UNet) to automatically segment the left atrial region in the MRI of a patient with LAE. After Gaussian blur, different resolutions of the MRI are obtained. High-resolution MRI clearly shows the detailed features of the left atrium, while low-resolution MRI clearly shows the overall outline of the left atrium, which can solve the problem of more minor MRI features. Adaptive channel weights can enhance the atrial segmentation capability of the network. RESULTS: Compared with the state-of-the-art left atrial segmentation methods, our CNN-based technique results in the segmentation of the left atrium being closer to the manual segmentation by an experienced radiologist. On the test datasets, the mean Dice similarity coefficient reaches 93.57%. CONCLUSION: Firstly, MRI has a small number of imaging artifacts, which results in low segmentation accuracy. Our method successfully solves the problem. Secondly, due to the high similarity between the background (the area outside the left atrium) and the foreground (the left atrium) in MRI, traditional neural networks misclassify the background as the foreground. Our GCW-Unit can address the imbalanced number of pixels between the foreground and background. Finally, after segmenting the left atrium in the MRI by GCW-Unit, we reconstructed the left atrium to model a three-dimensional heart of a patient suffering from LAE. Based on the different time frames of one heartbeat, we could present the dynamics of the left atrial structure during a cardiac cycle. This can better assist in the evaluation of LAE in heart patients.


Subject(s)
Cardiomyopathies , Cardiovascular Diseases , Heart Atria/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer
12.
Comput Methods Programs Biomed ; 221: 106872, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35594583

ABSTRACT

BACKGROUND AND OBJECTIVE: The underlying mechanism of aortic dissection (AD) remains unclear and the onset of AD is still unpredictable. Although clinical study with statistical analysis has reported that type III aortic arch may have strong correlation with type B AD (TBD), the effects of different arch types on the wall shear stress (WSS) have not been clarified. METHODS: As a complementary work, this study numerically investigated the distribution of five WSS-based indicators in thirty aortic arches without AD, which were classified into three groups based on the arch types. RESULTS: The distribution of most WSS indicators, such as time averaged WSS (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT) had no significant difference among different types of aortic arches (P>0.05). However, a multidirectional WSS index, namely CFI, was found its maximum value was positively correlated with type III aortic arch in proximal descending aorta (p<0.001, r = 0.65). CONCLUSIONS: It can be concluded that the enhancement or oscillation of WSS may not be the main reason of TBD is prevalence in type III arches, while the multidirectional WSS distribution may be an important factor. It can be further referred that the CFI may have a potential to predict the onset of TBD.


Subject(s)
Aorta, Thoracic , Aortic Dissection , Aortic Dissection/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Blood Flow Velocity , Hemodynamics , Humans , Regional Blood Flow , Stress, Mechanical , Thorax
13.
Comput Methods Programs Biomed ; 220: 106821, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35487181

ABSTRACT

BACKGROUND: Due to the advancement of medical imaging and computer technology, machine intelligence to analyze clinical image data increases the probability of disease prevention and successful treatment. When diagnosing and detecting heart disease, medical imaging can provide high-resolution scans of every organ or tissue in the heart. The diagnostic results obtained by the imaging method are less susceptible to human interference. They can process numerous patient information, assist doctors in early detection of heart disease, intervene and treat patients, and improve the understanding of heart disease symptoms and clinical diagnosis of great significance. In a computer-aided diagnosis system, accurate segmentation of cardiac scan images is the basis and premise of subsequent thoracic function analysis and 3D image reconstruction. EXISTING TECHNIQUES: This paper systematically reviews automatic methods and some difficulties for cardiac segmentation in radiographic images. Combined with recent advanced deep learning techniques, the feasibility of using deep learning network models for image segmentation is discussed, and the commonly used deep learning frameworks are compared. DEVELOPED INSIGHTS: There are many standard methods for medical image segmentation, such as traditional methods based on regions and edges and methods based on deep learning. Because of characteristics of non-uniform grayscale, individual differences, artifacts and noise of medical images, the above image segmentation methods have certain limitations. It is tough to obtain the needed results sensitivity and accuracy when performing heart segmentation. The deep learning model proposed has achieved good results in image segmentation. Accurate segmentation improves the accuracy of disease diagnosis and reduces subsequent irrelevant computations. SUMMARY: There are two requirements for accurate segmentation of radiological images. One is to use image segmentation to improve the development of computer-aided diagnosis. The other is to achieve complete segmentation of the heart. When there are lesions or deformities in the heart, there will be some abnormalities in the radiographic images, and the segmentation algorithm needs to segment the heart altogether. The quantity of processing inside a certain range will no longer be a restriction for real-time detection with the advancement of deep learning and the enhancement of hardware device performance.


Subject(s)
Deep Learning , Heart Diseases , Heart Diseases/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Radiography
14.
Comput Methods Programs Biomed ; 216: 106678, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35144147

ABSTRACT

OBJECTIVE: To present and validate a method for automated identification of the Lagrangian vortices and Eulerian vortices for analyzing flow within the right atrium (RA), from phase contrast magnetic resonance imaging (PC-MRI) data. METHODOLOGY: Our proposed algorithm characterizes the trajectory integral associated with vorticity deviation and the spatial mean of vortex rings, for the Lagrangian averaged vorticity deviation (LAVD) based identification and tracking of vortex rings within the heart chamber. For this purpose, the optical flow concept was adopted to interpolate the time frames between larger discrete frames, to minimize the error caused by constructing a continuous velocity field for the integral process of LAVD. Then the Hough transform was used to automatically extract the vortex regions of interest. The computed flow data within the RA of the participants' hearts was then used to validate the performance of our proposed method. RESULTS: In the paper, illustrations are provided for derived evolution of Euler vortices and Lagrangian vortices of a healthy subject. The visualization results have shown that our proposed method can accurately identify the Euler vortices and Lagrangian vortices, in the context of measuring the vorticity and vortex volume of the vortices within the RA chamber. Then the employment of Hough transform-based automated vortex extraction has improved the robustness and scalability of the LAVD in identifying cardiac vortices. The analytical results have demonstrated that the introduction of the Horn-Schunck optical flow can more accurately synthesize the intermediate PC-MRI to construct a continuous velocity field, compared with other interpolation methods. CONCLUSION: A novel analytical framework has been developed to accurately identify the flow vortices in the RA chamber based on Horn-Schunck optical flow and Hough transform. From the obtained analytical study results, the development and changes of dominant vortices within this cardiac chamber during the cardiac cycle can be acquired. This can provide to cardiologists a deeper understanding of the hemodynamics within the heart chambers.


Subject(s)
Heart Atria , Magnetic Resonance Imaging , Algorithms , Heart Atria/diagnostic imaging , Heart Ventricles , Hemodynamics , Humans , Magnetic Resonance Imaging/methods
15.
Magn Reson Imaging ; 85: 153-160, 2022 01.
Article in English | MEDLINE | ID: mdl-34699953

ABSTRACT

PURPOSE: In this paper, we proposed a Denoising Super-resolution Generative Adversarial Network (DnSRGAN) method for high-quality super-resolution reconstruction of noisy cardiac magnetic resonance (CMR) images. METHODS: The proposed method is based on feed-forward denoising convolutional neural network (DnCNN) and SRGAN architecture. Firstly, we used a feed-forward denoising neural network to pre-denoise the CMR image to ensure that the input is a clean image. Secondly, we use the gradient penalty (GP) method to solve the problem of the discriminator gradient disappearing, which improves the convergence speed of the model. Finally, a new loss function is added to the original SRGAN loss function to monitor GAN gradient descent to achieve more stable and efficient model training, thereby providing higher perceptual quality for the super-resolution of CMR images. RESULTS: We divided the tested cardiac images into 3 groups, each group of 25 images. Then, we calculated the Peak Signal to Noise Ratio (PSNR) /Structural Similarity (SSIM) between Ground Truth (GT) and the images generated by super-resolution, used them to evaluate our model. We compared with the current widely used method: Bicubic ESRGAN and SRGAN, our method has better reconstruction quality and higher PSNR/SSIM score. CONCLUSION: We used DnCNN to denoise the CMR image, and then using the improved SRGAN to perform super-resolution reconstruction of the denoised image, we can solve the problem of high noise and artifacts that cause the cardiac image to be reconstructed incorrectly during super-resolution.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Artifacts , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Signal-To-Noise Ratio
16.
Front Physiol ; 12: 698405, 2021.
Article in English | MEDLINE | ID: mdl-34539430

ABSTRACT

Objective: The measurement of cardiac blood flow vortex characteristics can help to facilitate the analysis of blood flow dynamics that regulates heart function. However, the complexity of cardiac flow along with other physical limitations makes it difficult to adequately identify the dominant vortices in a heart chamber, which play a significant role in regulating the heart function. Although the existing vortex quantification methods can achieve this goal, there are still some shortcomings: such as low precision, and ignoring the center of the vortex without the description of vortex deformation processes. To address these problems, an optical flow Lagrangian averaged vorticity deviation (Optical flow-LAVD) method is proposed. Methodology: We examined the flow within the right atrium (RA) of the participants' hearts, by using a single set of scans pertaining to a slice at two-chamber short-axis orientation. Toward adequate extraction of the vortex ring characteristics, a novel approach driven by the Lagrangian averaged vorticity deviation (LAVD) was implemented and applied to characterize the trajectory integral associated with vorticity deviation and the spatial mean of rings, by using phase-contrast magnetic resonance imaging (PC-MRI) datasets as a case study. To interpolate the time frames between every larger discrete frame and minimize the error caused by constructing a continuous velocity field for the integral process of LAVD, we implemented the optical flow as an interpolator and introduced the backward warping as an intermediate frame synthesis basis, which is then used to generate higher quality continuous velocity fields. Results: Our analytical study results showed that the proposed Optical flow-LAVD method can accurately identify vortex ring and continuous velocity fields, based on optical flow information, for yielding high reconstruction outcomes. Compared with the linear interpolation and phased-based frame interpolation methods, our proposed algorithm can generate more accurate synthesized PC-MRI. Conclusion: This study has developed a novel Optical flow-LAVD model to accurately identify cardiac vortex rings, and minimize the associated errors caused by the construction of a continuous velocity field. Our paper presents a superior vortex characteristics detection method that may potentially aid the understanding of medical experts on the dynamics of blood flow within the heart.

17.
Med Biol Eng Comput ; 59(7-8): 1417-1430, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34115272

ABSTRACT

The formation of vortex rings in the left ventricular (LV) blood flow is a mechanism for optimized blood transport from the mitral valve inlet to aortic valve outlet, and the vorticity is an important measure of a well-functioning LV. However, due to lack of quantitative methods, the process of defining the boundary of a vortex in the LV and identifying the dominant vortex components has not been studied previously. The Lagrangian-averaged vorticity deviation (LAVD) can enable us to compute the trajectory integral of the normed difference of the vorticity from its spatial mean. Therefore, in this work, we have employed LAVD to identify the Lagrangian vortices and Eulerian vortices for measuring the vortex volume and vorticity in the LV blood flow. We found that during the LV ejection period, the positive (counterclockwise) and negative (clockwise) vorticity of patients are consistently stronger than those of the healthy groups, and the counterclockwise vortex volume of healthy groups (0.84+0.26 ml) is greater than that of patients (0.55+0.28 ml) during the pre-ejection period. Then, during the middle ejection phase, the counterclockwise vortex ring volume of patients (1.89+0.36 ml) exceeds that of healthy groups (1.38+0.43 ml). Finally, during the end-ejection period, the counterclockwise vortex ring volume of healthy subjects (0.61+0.17 ml) is the same as that of patients (0.60+0.19 ml). The results presented in this paper can provide new insights into the blood flow patterns within the LV. It can accurately indicate the role of vortices and vorticity values in intra-LV flow, and portray how cardiomyopathy (and its distorted contractile mechanism) can affect intra-LV flow patterns and mitigate adequate LV outflow.


Subject(s)
Heart Ventricles , Hemodynamics , Aortic Valve , Blood Flow Velocity , Heart Ventricles/diagnostic imaging , Humans , Mitral Valve/diagnostic imaging
18.
Cardiovasc Eng Technol ; 12(3): 361-372, 2021 06.
Article in English | MEDLINE | ID: mdl-33650086

ABSTRACT

Heart disease has always been one of the important diseases that endanger health and cause death. Therefore, it is particularly important to understand left atrium reconstruction and atrial fibrillation before heart image processing. The purpose of this paper is to provide an important review of the mechanisms of left atrial remodeling (LAR) associated with atrial fibrillation (AF). LAR refers to the spectrum of pathophysiological changes in (i) atrial structure and physiological function, and (ii) electric, ionic, and molecular milieu of the LA, in response to stresses imposed by conditions such as hypertension, myocardial ischemia, autonomic denervation and congestive heart failure. The main mechanisms of LAR include electrical remodeling, structural remodeling, metabolic remodeling, autonomic remodeling, neurohormones and inflammation, and other influencing factors. LAR is not only the basic mechanism of AF and heart failure, but also the pathophysiological basis of its progression. In clinical practice, AF is the most common persistent arrhythmia, and is believed to be the result of a combination of mechanisms that have triggers and maintenance mechanisms, including spontaneous ectopic pacing and multiple wavelet reentry. While LA electrophysiological, structural, and ultra-structural changes trigger AF, in turn, AF alters the LA electrical and structural properties that promote its maintenance and recurrence. Chronic AF leads to extensive changes in atrial cellular substructures, including loss of myofibrils, accumulation of glycogen, changes in mitochondrial shape and size, fragmentation of sarcoplasmic reticulum, and dispersion of nuclear chromatin. Electrical remodeling and structural remodeling of the atria during AF, involving structural changes and functional impairment of the left atrium, can lead to serious decline in left ventricular function and severe heart failure. Therefore, LAR and AF are inter-activating phenomena, and the resulting complications can cause serious disabling and fatal events. In this paper, we present (i) the mechanisms of LAR, in the form of structural, electrical, metabolic, and neurohormonal changes, and (ii) their interactive roles in initiating and maintaining AF. These in-depth understanding of the atrial remodeling mechanisms can in turn provide useful insights into the treatment of AF and heart failure.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Heart Diseases , Heart Failure , Atrial Fibrillation/etiology , Heart Atria , Humans
19.
Comput Methods Programs Biomed ; 199: 105914, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383330

ABSTRACT

In cardiology, ultrasound is often used to diagnose heart disease associated with myocardial infarction. This study aims to develop robust segmentation techniques for segmenting the left ventricle (LV) in ultrasound images to check myocardium movement during heartbeat. The proposed technique utilizes machine learning (ML) techniques such as the active contour (AC) and convolutional neural networks (CNNs) for segmentation. Medical experts determine the consistency between the proposed ML approach, which is a state-of-the-art deep learning method, and the manual segmentation approach. These methods are compared in terms of performance indicators such as the ventricular area (VA), ventricular maximum diameter (VMXD), ventricular minimum diameter (VMID), and ventricular long axis angle (AVLA) measurements. Furthermore, the Dice similarity coefficient, Jaccard index, and Hausdorff distance are measured to estimate the agreement of the LV segmented results between the automatic and visual approaches. The obtained results indicate that the proposed techniques for LV segmentation are useful and practical. There is no significant difference between the use of AC and CNN in image segmentation; however, the AC method could obtain comparable accuracy as the CNN method using less training data and less run-time.


Subject(s)
Heart Ventricles , Neural Networks, Computer , Echocardiography , Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Machine Learning
20.
Comput Methods Programs Biomed ; 196: 105623, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32652355

ABSTRACT

OBJECTIVE: We propose a robust technique for segmenting magnetic resonance images of post-atrial septal occlusion intervention in the cardiac chamber. METHODS: A variant of the U-Net architecture is used to perform atrial segmentation via a deep convolutional neural network, and we compare performance with the Kass snake model. It can be used to determine the surgical success of atrial septal occlusion (ASO) pre- and post- the implantation of the septal occluder, which is based on the volume restoration of the right atria (RA) and left atria (LA). RESULTS: The method was evaluated on a test dataset containing 550 two-dimensional image slices, outperforming conventional active contouring regarding the Dice similarity coefficient, Jaccard index, and Hausdorff distance, and achieving segmentation in the presence of ghost artifacts that occlude the atrium outline. This problem has been unsolvable using traditional machine learning algorithm pertaining to active contouring via the Kass snake algorithm. Moreover, the proposed technique is closer to manual segmentation than the snakes active contour model in mean of atrial area (M-AA), mean of atrial maximum diameter (M-AMXD), mean atrial minimum diameter (M-AMID), and mean angle of the atrial long axis (M-AALA). CONCLUSION: After segmentation, we compute the volume ratio of right to left atria, obtaining a smaller ratio that indicates better restoration. Hence, the proposed technique allows to evaluate the surgical success of atrial septal occlusion and may support diagnosis regarding the accurate evaluation of atrial septal defects before and after occlusion procedures.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Algorithms , Heart Atria/diagnostic imaging , Image Processing, Computer-Assisted , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...